Sistema endocannabinoide. Una nueva diana antiobesidad
Autor: Juan Salazar V. | Publicado:  31/01/2012 | Diapositivas , Diapositivas de Medicina Interna , Diapositivas de Endocrinologia y Nutricion , Imagenes , Imagenes de Medicina Interna , Imagenes de Endocrinologia y Nutricion , Articulos , Endocrinologia y Nutricion , Farmacologia , Medicina Interna | |
Sistema endocannabinoide. Una nueva diana antiobesidad .6

20. Rodríguez de Fonseca F. Sistema endocannabinoide y control de la ingesta. Rev Med Univ Navarra. 2004. Vol 48, Nº 2, 18-23.
21. Rodríguez de Fonseca F, y cols. The Endocannabinoid System: Physiology and Pharmacology. Alcohol & Alcoholism. 2005. Vol. 40, No. 1, pp. 2–14.
22. Oka, S., y cols. Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) was not detected in the brains of various mammalian species. Journal of Neurochemistry (2003) 85, 1374–1381.
23. Zieher LM, Guelman LR. El sistema de los endocannabinoides y su rol en el control de la ingesta alimentaria. Psicofarmacología. 2005. 5:33.
24. De Petrocellis L, y cols. Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response. Neuroscience 1999; 92:377-387.
25. Soderstrom K, Leid M, Moore F, Murray T. Behavioral, pharmacological, and molecular characterization of an amphibian cannabinoid receptor. J Neurochem 2000;
75:413-423.
26. Alger BE. Endocannabinoids: getting the message across. Proc Natl Acad Sci US A 2004; 101: 8512-13.
27. Di Marzo V, y cols.. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410: 822-25.
28. Pagotto U, Vicennati V, Pasquali R. The endocannabinoid system and the treatment of obesity. Ann Med. 2005; 37: 270-5.
29. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003; 4:873–884.
30. Feliciano JE, Mendivil CO, Sierra ID. Sistema Endocannabinoide: Modificando los factores de riesgo cardiovascular. Rev Fac Med Univ Nac Colomb 2006 Vol. 54 No. 4.
31. Stella, N. Piomelli, D. Receptor-dependent formation of endogenous cannabinoids in cortical neurons. European Journal of Pharmacology (2001) 425, 189–196.
32. Kim, J., Isokawa, M., Ledent, C. Alger, B. E. Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. Journal of Neuroscience (2002) 22, 10182–10191.
33. Okamoto, Y., y cols. Molecular characterization of a phospholipase D generating anandamide and its congeners. Journal of Biological Chemistry (2004) 279, 5298–5305.
34. Kano M, y cols. Endocannabinoid-Mediated Control of Synaptic Transmission. Physiol Rev 2009. 89: 309–380.
35. Sugiura T, y cols. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun, 1995. 215: 89–97.
36. Fowler CJ, Jacobsson SO. Cellular transport of anandamide, 2-arachidonoylglycerol and palmitoylethanolamide–targets for drug development? Prostaglandins Leukot Essent Fatty Acids, 2002. 66: 193–200.
37. McFarland MJ, Barker EL. Anandamide transport. Pharmacol Ther, 2004.104: 117–135.
38. Giuffrida, A., Beltramo, M. Piomelli, D. Mechanisms of endocannabinoid inactivation: biochemistry and pharmacology. Journal of Pharmacology and Experimental Therapeutics. (2001) 298, 7–14.
39. Beltramo M, Piomelli D. Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol. Neuroreport, 2000.11: 1231–1235.
40. Bisogno T, y cols. The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors. Eur J Biochem, 2001.268: 1982–1989.
41. Vandevoorde S, Lambert DM. The multiple pathways of endocannabinoid metabolism: a zoom out. Chem Biodivers, 2007. 4: 1858–1881.
42. Cravatt, B. F., y cols. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. (1996) 384, 83–87.
43. Dinh TP, y cols. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA, 2002. 99:10819–10824.
44. Dinh TP, Kathuria S, Piomelli D. RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2 - arachidonoylglycerol. Mol Pharmaco, 2004. 66: 1260–1264.
45. Gulyas, A. I., y cols. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. European Journal of Neuroscience (2004) 20, 441–458.
46. Fowler C. The contribution of cyclooxygenase-2 to endocannabinoid metabolism and action. Br J Pharmacol 2007; 152(5): 594-601.
47. Matsuda LA, y cols. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346:561-4.
48. Marsicano G, Lutz B. Neuromodulatory functions of the endocannabinoid system. J Endocrinol Invest 2006; 29 (3 Suppl): 27-46.
49. Cota D, y cols. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003; 112 (3): 423-31.
50. Osei-Hyiaman D, y cols. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet induced obesity. J Clin Invest 2005; 115 (5): 1298-305.
51. Cavuoto P, y cols. The expression of receptors for endocannabinoids in human and rodent skeletal muscle. Biochem Biophys Res Commun 2007; 364 (1): 105-10.
52. Juan-Picó P, y cols. Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic beta-cell. Cell Calcium 2006; 39 (2): 155-62.
53. Ishac EJ, y cols. Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol 1996; 118:2023-28.
54. Howlett AC, y cols. International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacological Reviews 2002; 54(Suppl 2): 161-202.
55. Lepicier P, Bouchard JF, Lagneux C, Lamontagne D. Endocannabinoids protect the rat isolated heart against ischaemia. Br J Pharmacol 2003; 139:805-15.
56. Núñez E, Benito C, y cols. Glial expression of cannabinoid CB2 receptors and fatty acid amide hydrolase are beta amyloid-linked events in Down’s syndrome. Neurosci 2008; 151:104-10.
57. Lunn, CA. A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J Pharmacol Exp Ther 2006; 316:780-8.
58. Henstridge C, Balenga N, y cols. The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 2009; 23 (1): 183-93.
59. Lo Verme J, y cols. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the antiinflammatory actions of palmitoylethanolamide. Mol Pharmacol 2005; 67(1): 15-9.
60. Zygmunt PM, y cols. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999; 400: 452–457.
61. Maejima T, Hashimoto K, Yoshida T, Aiba A, Kano M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 2001; 31: 463–475.
62. Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 2001; 29: 729–738.
63. Wilson RI, Nicoll RA. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 2001; 410: 588–592.
64. Howlett AC & Fleming RM. Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membranes. Molecular Pharmacology 1984. 26 532–538.
65. Howlett AC. Cannabinoid inhibition of adenylate cyclase. Biochemistry of the response in neuroblastoma cell membranes. Molecular Pharmacology 1985. 27 429–436.
66. Howlett AC. Cannabinoid receptor signalling. Handbook of Experimental Pharmacology 2005.168 53–79.
67. Glass M & Felder C. Concurrent stimulation of cannabinoid CB1and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. Journal of Neuroscience 1997. 17 5327–5333.
68. Kearn CS, y cols. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Molecular Pharmacology 2005. 67 1697–1704.
69. Rhee MH, y cols. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. Journal of Neurochemistry 1998. 71 1525–1534.
70. Turu G & Hunyady L. Signal transduction of the CB1 cannabinoid receptor. Journal of Molecular Endocrinology (2010) 44, 75–85.
71. Ameri A. The effects of cannabinoids on the brain. Progress in neurobiology (1999) 58; 315-348.
72. Demuth DG & Molleman A. Cannabinoid signalling. Life Sci. 2006 2; 78(6):549-63.
73. Moranta D. y cols. Acute, chronic and withdrawal effects of the cannabinoid receptor agonist WIN55212-2 on the sequential activation of MAPK/Raf-MEK-ERK signaling in the rat cerebral frontal cortex: short-term regulation by intrinsic and extrinsic pathways. J Neurosci Res. 2007 15; 85(3):656-67.
74. Davis MI, Ronesi J & Lovinger DM. A predominant role for inhibition of the adenylate cyclase/protein kinase A pathway in ERK activation by cannabinoid receptor 1 in N1E–115 neuroblastoma cells. Journal of Biological Chemistry 2003. 278 48973–48980.
75. Galve-Roperh I, y cols. Mechanism of extracellular signal-regulated kinase activation by the CB(1) cannabinoid receptor. Molecular Pharmacology 2002. 62 1385–1392.
76. Sugiura T, y cols. 2-Arachidonoylglycerol, a putative endogenous cannabinoid receptor ligand, induces rapid, transient elevation of intracellular free Ca2C in neuroblastoma! glioma hybrid NG108-15 cells. Biochemical and Biophysical Research Communications 1996. 229 58–64.
77. Sugiura T, Kodaka T, y cols. Is the cannabinoid CB1 receptor a 2-arachidonoylglycerol receptor? Structural requirements for triggering a Ca2C transient in NG108-15 cells. Journal of Biochemistry 1997. 122 890–895.
78. Lauckner JE, Hille B & Mackie K. The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. PNAS 2005. 102 19144–19149.
79. Jin W, y cols. Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. Journal of Neuroscience 1999. 19 3773–3780.
80. Breivogel CS, y cols. Sensitivity to delta9-tetrahydrocannabinol is selectively enhanced in beta-arrestin2 K/K mice. Behavioural Pharmacology 2008. 19 298–307.
81. Stella N. Cannabinoid signaling in glial cells. Glia 2004. 48:267–277.
82. Tart C. Marijuana intoxication: Common experiences. Nature, 1970, Vol. 226. 701-704.
83. Abel EL. Effects of marihuana on the solution of anagrams, memory and appetite. Nature 1971 28; 231-260.
84. Foltin RW, Brady JV Behavioral analysis of marijuana effects on food intake in humans. Pharmacol Biochem Behav.1986 25(3):577-82.
85. Matias I y Di Marzo V. Endocannabinoids and the control of energy balance. Trends Endocrinol Metabol (2007) 18 27–37.
86. Engeli S, y cols. Activation of the peripheral endocannabinoid system in human obesity. Diabetes. 2005; 54: 2838-43.
87. Mendivil CO, Sierra ID. Avances en obesidad. Rev Fac Med Univ Nac Colomb 2004; 52(4): 270-286.
88. Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 2001; 134: 1151-1154.
89. Kirkham TC, Williams CM, Fezza F, Di Marzo V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002; 136: 550-7.
90. Fride E, Bregman T, Kirkham TC. Endocannabinoids and food intake: newborn suckling and appetite regulation in adulthood. Exp Biol Med (Maywood). 2005 230(4):225-34.
91. López-Jaramillo P, y cols. El sistema endocanabinoide y su relación con la obesidad abdominal y el síndrome metabólico: implicaciones terapéuticas. Rev. Col Cardiol. 2005. Vol. 12 No. 3 113-121.
92. García Barreno P. Gordos y Flacos. Rev.R.Acad.Cienc.Exact.Fís.Nat. 2007. Vol. 101, Nº. 2, pp 361-387.
93. Arnone, M, et al. Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacol. 1997. 132:104-106.
94. Mahler SV, Smith KS, Berridge KC. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances 'liking' of a sweet reward. Neuropsychopharmacology 2007. 32 (11): 2267–78.
95. Despres JP. The endocannabinoid system: a new target for the regulation of energy balance and metabolism. Critical Pathways in Cardiology 2007 6 46–50.
96. Croci T, y cols. In vitro functional evidence of neuronal cannabinoid CB1 receptors in human ileum. British Journal of Pharmacology 1998. 125 1393–1395.
97. Liu YL, Connoley IP, Wilson CA & Stock MJ. Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lep(ob)/Lep(ob) mice. International Journal of Obesity 2005. 29 183–187.


Revista Electronica de PortalesMedicos.com
INICIO - NOVEDADES - ÚLTIMO NÚMERO - ESPECIALIDADES - INFORMACIÓN AUTORES
© PortalesMedicos, S.L.
PortadaAcerca deAviso LegalPolítica de PrivacidadCookiesPublicidadContactar