Pacientes con Daño Cerebral Traumatico Ligero y Sindrome Postconmocional en la Atencion Primaria de Salud
Autor: MSc. Dr. Carlos Enrique Hernández Borroto | Publicado:  14/12/2009 | Neurologia , Medicina Familiar y Atencion Primaria , Neurocirugia | |
Pacientes con Daño Cerebral Traumatico Ligero y Sindrome Postconmocional en Atencion Primaria .17

61.     Graham DI, Adams JH, Nicoll JAR, Maxwell WL, Gennarelli TA. The nature, distribution and causes of traumatic brain injury. Brain Pathology 1995; 5: 397–406.

62.     Holbourn AHS. The mechanics of head injuries. Lancet 1943: 438–441.

63.     Levi L, Guilburd JN, Lemberger A, Soustiel JF, Feinsod M. Diffuse axonal injury: analysis of 100 patients with radiological signs. Neurosurgery 1990; 27: 429-432.

64.     Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT. Ultrastructural studies of diffuse axonal injury in humans. Journal of Neurotrauma 1994; 11: 173-186.

65.     Stone JR, Singleton RH, Povlishock JT. Intra-axonal Neurofilament Compaction Does Not Evoke Local Axonal Swelling in all Traumatically Injured Axons. Experimental Neurology 2001; 172: 320-331.

66.     Yaghmai A, Povlishock J. Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. Journal of Neuropathology and Experimental Neurology 1992; 51: 158-176.

67.     Povlishock JT. Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 1992; 2: 1–12.

68.     Povlishock JT. Pathophysiology of neural injury: therapeutic opportunities and challenges. Clin Neurosurg 2000; 46:113–26.

69.     Povlishock JT, Becker DP, Cheng CL. Axonal change in minor head injury. J Neuropathol Exp Neurol 1983; 42: 225–42.

70.   Povlishock JT, Becker DP, Miller JD. The morphopathologic substrates of concussion? Acta Neuropathol (Berl) 1979; 47: 1–11.

71.   Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma 1995; 12: 555–64.

72.   Povlishock JT, Jenkins LW. Are the pathobiological changes evoked by traumatic brain injury immediate and irreversible? Brain Pathol 1995; 5: 415–26.

73.   Obrenovitch TP, Urenjak J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma 1997; 14: 677–98.

74.   Arciniegas DB. The cholinergic hypothesis of cognitive impairment caused by traumatic brain injury. Curr Psychiatry Rep 2003; 5: 391–9.

75.   Dikranian K, Cohen R, Mac Donald C, Pan Y, Brakefield D, Bayly P, et al. Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Exp Neurol 2008 June; 211(2): 551–560.

76.   Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 2004; 24: 133–50.

77.   DeWitt DS, Prough D. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma 2003; 20: 795–825.

78.   Rodriguez-Baeza A, Reina-De La Torre F, Poca A, Marti M, Garnacho A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat Rec Part A 2003; 273A: 583–93.

79.   McIntosh TK, Smith DH, Meaney DF, Kotapka MJ, Gennarelli TA, Graham DI. Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biochemical mechanisms. Lab Invest 1996; 74: 315–42.

80.   Scremin OU, Jenden DJ. Cholinergic modulation of cerebral cortical blood flow changes induced by trauma. J Neurotrauma 1997; 14: 573–86.

81.   Armstead WM. Differential activation of ERK, p38, and JNK MAPK by nociceptin/orphanin FQ in the potentiation of prostaglandin cerebrovasoconstriction after brain injury. Eur J Pharmacol 2006; 529: 129–35.

82.   Cunningham AS, Salvador R, Coles JP,. Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 2005; 128: 1931–42.

83.   Kelly DF, Korndestani RK, Martin NA. Hyperemia following traumatic brain injury: relationship to intracranial hypertension and outcome. J Neurosurg 1996; 85: 762–71.

84.   Langfitt TW, Weinstein JD, Kassell NF. Cerebral vasomotor paralysis produced by intracranial hypertension. Neurology 1965; 15: 622–41.

85.   Martin NA, Patwardhan RV, Alexander MJ. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 1997; 87: 9–19.

86.   Sakas DE, Bullock MR, Patterson J, Hadley D, Wyper DJ, Teasdale GM. Focal cerebral hyperemia after focal head injury in humans: a benign phenomenon? J Neurosurg 1995; 83: 277–84.

87.   Kelly DF, Martin NA, Kordestani R. Cerebral blood flow as a predictor of outcome following traumatic brain injury. J Neurosurg 1997; 86: 633–41.

88.   Tavazzi B, Signoretti S, Lazzarino G. Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery 2005; 56: 582–9.

89.   Verweij BH, Muizelaar JP, Vinas F, Peterson PL, Xiong Y, Lee CP. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg 2000; 93: 815–20.

90.   Bullock R, Zauner A, Woodward JJ. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 1998; 89: 507–18.

91.   Robertson CS, Bell MJ, Kochanek PM, et al. Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity. Crit Care Med 2001; 29: 2287–3393.

92.   Floyd CL, Gorin FA, Lyeth BG. Mechanical strain injury increases intracellular sodium and reverses Naþ/Ca2þ exchange in cortical astrocytes. Glia 2005; 51: 35–46.

93.   Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Intern 2006; 48: 394–403.

94.   Obrenovitch TP, Urenjak J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma 1997; 14: 677–98.

95.   Bayir H, Kagan VE, Borisenko GG. Enhanced oxidative stress in iNOS-deficient mice after traumatic brain injury: support for a neuroprotective role of iNOS. J Cereb Blood Flow Metab 2005; 25: 673– 4.

96.   Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75: 207–46.

97.   Shao CX, Roberts KN, Markesbery WR, Scheff SW, Lovell MA. Oxidative stress in head trauma in aging. Free Radic Biol Med 2006; 41: 77–85.

98.   Povlishock JT, Becker DP. Fate of reactive axonal swellings induced by head injury. Lab Invest 1985; 52: 540–552.

99.   Pettus EH, Christman CW, Giebel ML. Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change. J Neurotrauma 1994; 11: 507–522.

100.   Blumbergs PC, Scott G, Manavis J. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma 1995; 12: 565–572.

101.   Adams JH, Doyle D, Ford I. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 1989; 15: 49–59.

102.   Choi DW. Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 1996; 6: 667–72.

103.   Eldadah BA, Faden AI. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 2000; 17: 811–29.

104.   Chamelian L, Reis M, Feinstein A. Six-month recovery from mild to moderate Traumatic Brain Injury: the role of APOE-e4 allele. Brain Advance Access published October 20, 2004.

105.   Friedman G, Froom P, Sazbon L, Grinblatt I, Schochina M, Tsenter J. Apolipoprotein E-ɛ4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 1999; 52: 244–8.

106.   Crawford FC, Vanderploeg RD, Freeman MJ, Singh S, Waisman M, Michaels L. APOE genotype influences acquisition and recall following traumatic brain injury. Neurology 2002; 58: 1115–18.

107.   Teasdale GM, Nicoll JA, Murray G, Fiddes M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 1997; 350: 1069–71.

108.   Lichtman SW, Seliger G, Tycko B, Marder K. Apolipoprotein E and functional recovery from brain injury following postacute rehabilitation. Neurology 2000; 55: 1536–9.

109.   Chiang MF, Chang JG, Hu CJ. Association between apolipoprotein E genotype and outcome of traumatic brain injury. Acta Neurochir (Wien) 2003; 145: 649–54.

110.   Jordan BD, Relkin NR, Ravdin LD. Apolipoprotein E e4 associated with chronic traumatic brain injury in boxing. JAMA 1997; 278: 136–40.

111.   Nathoo N, Chetty R, van Dellen JR. Genetic vulnerability following traumatic brain injury: the role of apolipoprotein E. Mol Pathol 2003; 56: 132–6.

112.   Arciniegas DB, Topkoff JL, Filley CM. Apolipoprotein-E4 in association with persistent neurophysiologic impairment after mild traumatic brain injury. J Neuropsychiatry Clin Neurosci 2003; 15: 276.

113.   Rapoport M, Wolf U, Herrmann N, Kiss A, Shammi P, Reis M. Traumatic Brain Injury, Apolipoprotein E-e4, and Cognition in Older Adults: A Two-Year Longitudinal Study. J Neuropsychiatry Clin Neurosci 2008; 20 (1): 68-73.

114.   Bell JD, Ai J, Chen Y, Baker AJ. Mild in vitro trauma induces rapid Glur2 endocytosis, robustly augments calcium permeability and enhances susceptibility to secondary excitotoxic insult in cultured Purkinje cells. Brain 2007; I30: 2528-2542.

115.   Park E, McKnight S, Ai J, Baker AJ. Purkinje cell vulnerability to mild and severe forebrain head trauma. J Neuropathol Exp Neurol 2006; 65: 226–34.

116.   Middleton FA, Strick PL. The cerebellum: an overview. Trends Neurosci 1998; 21: 367–9.

117.   Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 2000; 31: 236–50.

118.   Manni E, Petrosini L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 2004; 5: 241–9.

119.   Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 1994; 266: 458–61.

120.   Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 2001; 15: 700–12.

121.   Petrosini L, Leggio MG, Molinari M. The cerebellum in the spatial problem solving: a co-star or a guest star? Prog Neurobiol 1998; 56: 191–210.

122.   Lalonde R, Strazielle C. The effects of cerebellar damage on maze learning in animals. Cerebellum 2003; 2: 300–9.

123.   Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol 2004; 14: 215–222.

124.   Butler TL, Kassed CA, Pennypacker KR. Signal transduction and neurosurvival in experimental models of brain injury. Brain Res Bull 2003; 59: 339–351.

125.   Gaetz M. The neurophysiology of brain injury. Clin Neurophysiol 2004; 115: 4–18.

126.   Dutton RP, McCunn M. Traumatic brain injury. Curr Opin Crit Care 2003; 9: 503–509.

127.   Goldstein LB: Neuropharmacology of TBI-induced plasticity. Brain Inj 2003; 17: 685–694.

128.   Rothman MS, Arciniegas DB, Filley CM, Wierman ME. The Neuroendocrine Effects of Traumatic Brain Injury. J Neuropsychiatry Clin Neurosci 2007; 19 (4): 363-372.

129.   Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965; 19: 739-744.

130.   Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium–dependent and –independent interactions of the S100 protein family. Biochem J 2006; 396: 201-214.

131.   Sadaghat F, Notopoulos A. S100 protein family and its application in clinical practice. Hippokratia 2008; 12(4): 198-204.

132.   Gerlach R, Demel G, Konig HG. Active secretion of S100B from astrocytes during metabolic stress. Neuroscience 2006; 141: 1697-1701.

133.   de Boussard CN, Lundin A, Karlstedt D, Edman G, Bartfai A, Borg J. S100 and cognitive impairment after mild traumatic brain injury. J Rehabil Med 2005; 37: 53-57.

134.   Biberthaler P, Linsenmeier U, Pfeifer KJ. Serum S-100B concentration provides additional information for the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock 2006; 25: 446-453.

135.   Muller K, Townend W, Biasca N. S100B serum level predicts computed tomography findings after minor head injury. J Trauma 2007; 62: 1452-1456.

136.   Morochovi R, Racz O, Kitka M, Pingorov S, Cibur P, Tomkov D, et al. Serum S100B protein in early management of patients after mild traumatic brain injury. Eur J Neurol 2009 May 12. [Epub ahead of print].

137.   Netto CB, Conte S, Leite MC. Serum S100B protein is increased in fasting rats. Arch Med Res 2006; 37: 683-686.

138.   Kavesdi E, Lackl J, Bukovics P, Farkas O, Czeiter E, Szell D, et al. Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir (Wien) 2009 Aug 4. [Epub ahead of print].

139.   Ruan S, Noyes K, Bazarian JJ. The economic impact of S-100B as a pre-head CT screening test on emergency department management of adult patients with mild traumatic brain injury. J Neurotrauma 2009 May 4. [Epub ahead of print].

140.   Williams DH, Levin HS, Eisenberg HM. Mild head injury classification. Neurosurgery 1990; 27: 422–428.


Revista Electronica de PortalesMedicos.com
INICIO - NOVEDADES - ÚLTIMO NÚMERO - ESPECIALIDADES - INFORMACIÓN AUTORES
© PortalesMedicos, S.L.
PortadaAcerca deAviso LegalPolítica de PrivacidadCookiesPublicidadContactar